Gladier

Release 0.7.1

The Gladier Team

Dec 13, 2022

Gladier

1.1

1.2

1.3

1.4

1.5

1.6 Writing Custom Tools
1.7

1.8

Gladier Tools

2.1

2.2

2.3

Examples

3.1

3.2

Upgrade Migrations
4.1

4.2

Glossary

5.1

5.2

5.3

5.4 Globus Queues and Triggers
5.5

5.6

Changelog

6.1

6.2

6.3 BREAKING CHANGES
6.4

6.5

6.6

6.7

6.8

6.9

Installation
Setup
Getting Startedo
Clients,
Tools

GlobusTools
PublishTools
PosixTools

Pre Requisites
Example Flows

Migratingtov0.5.0o
Migratingtov0.4.0

Globus e
GlobusFlows
FuncX

Globus Transfer
GlobusAuth

0.7.1 (2022-08-25)
BugFixes oo oL

Features
BugFixes
0.6.3(2022-07-20)o
BugFixes
0.6.2(2022-05-06)
BugFixeso L.

Flow Generation
SDKReference

CONTENTS:

.......................... 31

.......................... 32

6.10 0.6.1 (2022-05-05) o v e e e e e e e e e e e e e 32
6.11 Features o e e e e e e e 32
6.12 BREAKING CHANGES e e e e s e e e 32
6.13 Features o i e e e e e e e e e e e 32
6.14 BugFixes o L e e e e 32
6.15 BugFixes L 33
6.16 BREAKING CHANGES e e e e e e e e e e e 33
6.17 Features o o v e e e e e e e e e e e 33
6.18 BugFixes o e e e e e 33
6.19 0.5.4 (2021-11-15) o o e e 33
6.20 BugFixes e e 33
6.21 0.5.3(2021-09-14) o e e e e e e e e e e e e 34
6.22 BUugFixes i e e e e e e e e 34
6.23 0.5.2/(2021-08-23) e e e e e e e 34
6.24 Features v v it e e e e e e e e e e e e e e e e e 34
6.25 BugFixes 34
6.26 0.5.1 (2021-08-19) o v e e e e e e e e e 34
6.27 BUugFixes o e e e e e e e e e e 34
6.28 BREAKING CHANGES e e e e e e e e 34
6.29 BugFixes e 34
6.30 0.4.1 (2021-07-20) o e e e e 35
6.31 Features o i e e e e e e e e e e e e e e e e e e e 35
6.32 BREAKING CHANGES e e e e e e e e e 35
6.33 Features o o v e e e e e e e 35
6.34 0.3.5 (2021-07-14) . . . o o o e e e e e e e e 35
6.35 Features e e e e e e e 35
6.36 0.3.4(2021-07-09) e 35
6.37 BUgFixes o e e e e e e e e e e 35
6.38 0.3.3(2021-06-18) . . . v o vt e e e e e e e e e e e 35
6.39 BugFixes o e e e e e e e e 35
6.40 0.3.2(2021-06-17) o o e e 36
6.41 BugFixes L e 36
6.42 0.3.1 (2021-06-04) o e e e e e e e e e e 36
6.43 BugFixes i e e e e e e e e e e 36
6.44 0.3.0 (2021-05-28) i e e e e e e e e e e 36
6.45 Features o o e e e e e e e e e e e e 36
6.46 BugFixes L 36
6.47 0.2.0-May 17,2021 o o e 36
6.48 0.0.1-AprS5,2021 e e e e e e e e e e 36
7 Indices and tables 37
Index 39

Gladier, Release 0.7.1

Gladier: The Globus Architecture for Data-Intensive Experimental Research.

Gladier is a development tool for rapidly building new scientific flows for experimental facilities. It seamlessly inte-
grates FuncX’s remote function execution capabilities with the Globus Flows Services, enabling complete data pipelines
to be established from data capture to publication. Run your experiments, analyze inside a super computing environ-
ment, and publish your results to Globus Search.

For a full explanation of the Gladier architecture and API below, continue reading the docs here. If you would like to
skip ahead and play with Examples, there are Binder notebooks listed below with all requirements pre-installed.

CONTENTS: 1

Gladier, Release 0.7.1

2 CONTENTS:

CHAPTER
ONE

GLADIER

Gladier is a development tool that sits on top of the Globus Automate Client and FuncX. This allows a scientist to write
arbitrary python code for any purpose, deploy it to an HPC, and tie the workflow together into a complete Globus Flow
for execution on demand.

The documentation below will cover the following:
* Installing Gladier
e Setting up your environment (FuncX and GCP)
* Running Gladier Clients

When you are familiar with running Gladier Clients, you should browse the reference documentation on Gladier Clients,
Tools, and how to tweak the final Globus Flow with flow generation modifiers.

1.1 Installation

Gladier requires Python 3.6 and higher. For a modern version of python, see the official Python Installation Guide.
Gladier includes two main packages available through PyPi:

* Gladier — The core development tooling for building and running flows

* Gladier Tools — An optional set of plugable tools for common tasks

With pip installed, you can do the following:

pip install gladier gladier-tools

1.2 Setup

The typical Gladier Flow is composed of two major parts
* Transfer data into a location where execution can be performed (usually a super computer)
* Perform the execution

The first part is solved by Globus Transfer, and the second by FuncX Endpoints. In order for your computer to be
accessible by Globus, it needs to be running a Globus Endpoint. See the Globus Connect Personal section below. For
the second part, you will need to setup a FuncX Endpoint to tell FuncX where it should execute functions. See the
FuncX Endpoint section below for details.

https://globus-automate-client.readthedocs.io/en/latest/
https://funcx.org/
https://docs.python-guide.org/starting/installation/

Gladier, Release 0.7.1

1.2.1 Globus Connect Personal

To run tools like gladier_tools.globus.Transfer, we need access to Globus endpoints. One can use Globus
Tutorial Endpoint 1 and Globus Tutorial Endpoint 2. However, setting up your own endpoint gives you more control over
the data you transfer, which brings us to Globus Connect Personal. Follow the Globus Connect Personal instructions
to set up your own GCP endpoint, then navigate to Globus Web App endpoints to see details about the endpoint.

Your Globus endpoint should be accessible on the same machine you install your FuncX endpoint.

1.2.2 FuncX Endpoint

Another thing we need to run flows are an endpoint to run the funcx-functions on. There is a tutorial endpoint that can
be used but it is generally preferred to set up a funcx-endpoint. Follow the FuncX Endpoint instructions to set up your
own endpoint. Once an endpoint has been configured, you can list all the endpoints you have using funcx-endpoint
list. To start an endpoint, use funcx-endpoint start <endpoint-name>.

1.3 Getting Started

The guide here shows a step by step guide to archiving a file and transferring it. Provided you have done the Setup, you
can run this full example in the Tar and Transfer section in Examples.

A typical Gladier Client looks like the following:

@generate_flow_definition
class TarAndTransfer(GladierBaseClient):
gladier_tools = [
'gladier_tools.posix.Tar',
'gladier_tools.globus.Transfer',

The new class has two main attributes:
* gladier_tools — Defines which tools you want to use for this client
* @generate_flow_definition — Splices together flows on each tool into one single runnable flow

Each Gladier tool sets its own FuncX Functions, required input, and separate Globus Flow. The Gladier Client gath-
ers everything into one place. It handles registering functions, ensuring each tools input requirements are met, and
deploying/updating the final combined Globus flow. After that, running the flow is as simple as these two lines:

tar_transfer_cli = TarAndTransfer()
flow = tar_transfer_cli.run_flow()

The first line instantiates the client with default values, which means it will automatically trigger login for Globus Auth
and register Flows and FuncX functions as needed.

The second line, flow = hello_cli.run_flow(), is responsible for several different things:
 Gathering default input from each tool
* Validating input for each tool
» Triggering an initial login for access to FuncX and the Flows Service
* Registering funcx functions (And re-registering, if they have changed)

* Registering the flow_definition (And updating if it has changed)

4 Chapter 1. Gladier

https://app.globus.org/file-manager/collections/ddb59aef-6d04-11e5-ba46-22000b92c6ec/overview
https://app.globus.org/file-manager/collections/ddb59aef-6d04-11e5-ba46-22000b92c6ec/overview
https://app.globus.org/file-manager/collections/ddb59af0-6d04-11e5-ba46-22000b92c6ec/overview?back=collections
https://www.globus.org/globus-connect-personal
https://app.globus.org/endpoints
https://funcx.readthedocs.io/en/latest/endpoints.html

Gladier, Release 0.7.1

* Triggering a second login to authorize the deployed flow
* Starting the flow

Once this checklist is complete, the flow is stared and will run through each flow-state in sequence. First, taring a
directory then transferring the resulting archive. Nothing more is needed from Gladier, however there are extra tools
for tracking a flows progress and output.

tar_transfer_cli.progress(flow['action_id'])
details = tar_transfer_cli.get_status(flow['action_id'])
pprint(details)

hello_cli.progress() will periodically query the status of the flow until it finishes. It’s a nice way to watch progres-
sion as the flow executes. Once the flow has finished, hello_cli.get_status() will fetch output from the Globus
Flow, so it can be displayed in a readable format.

1.3.1 Re-Running Flows

The most useful aspects of Gladier come into play when making changes to a flow or function. Both Flows and
Functions are checksummed on each run to detect changes, and Gladier will automatically re-register any function that
has changed, or update the flow if it has changed. This allows users to focus on writing functions without worrying if
a change has been applied. Entire tools can also be added or removed from a flow simply by commenting them out.

Each flow or function update is logged in the INFO log in python. Additionally, if you wish to see the full flow definition
at any time, it can be queried in an instantiated client like so:

tar_transfer_cli = TarAndTransfer()
pprint (tar_transfer_cli.flow_definition)

1.3.2 Next Steps

Running examples in the Examples section is highly recommended.

1.4 Clients

import os
from gladier import GladierBaseClient, generate_flow_definition
from my_tools import RunAnalysis

@generate_flow_definition
class ExampleAnalysisPipeline(GladierBaseClient):
secret_config_filename = os.path.expanduser('~/.gladier-secrets.cfg')
config_filename = 'gladier.cfg'
app_name = 'gladier_client'
client_id = 'e6c75d97-532a-4c88-b031-8584a319fa3e’

gladier_tools = [
'my_repo.custom_tools.PrepareData’,
RunAnalysis,
'my_other_repo.stats.GenerateStatistics',

(continues on next page)

1.4. Clients 5

Gladier, Release 0.7.1

(continued from previous page)

'my_other_repo.custom_tools.Publish',

1.4.1 Main Components

There are two main components of a Gladier Client:

¢ gladier_tools — A list of Gladier Tools derived from gladier.GladierBaseTool More on Gladier Tools
below.

e flow_definition — A complete Globus Flow, supplied automatically with @generate_flow_definition

gladier_tools may be specified as a dotted string path (Ex: my_repo.custom_tools.PrepareData) or as a class
that derives from gladier.GladierBaseTool (Ex: RunAnalysis). If @generate_flow_definition is used, the
order the tools appear in the list determines the order they will appear in the flow. Each tool must have a complete and
valid flow defined on it.

flow_definition may be a python dict which defines a full and complete flow, and can be an alterna-
tive to using @generate_flow_definition. Note that @generate_flow_definition will overwrite the
" flow_definition set on the client on instantiation.

1.4.2 Other Attritubes
* globus_group — adds the Globus Group to all Automate permission levels: visible_to, runnable_by, adminis-
tered_by, manage_by, monitor_by. See the Flows Client Docs for more info.

e secret_config_filename — defines where login credentials are stored. Also stores function/flow ids and
checksums

e config_filename — defines where GladierClient specific runtime variables are stored
* app_name — The name of the application, as it appears in Globus

e client_id — The UUID of the registered Globus Application, from https://developers.globus.org

1.4.3 See Also

* The complete SDK Reference

e Flow Generation

1.5 Tools

from gladier import GladierBaseTool, generate_flow_definition

def makedirs(**data):
"""Make a directory on the filesystem
import os
os.makedirs(data['name'], mode=data['mode'], exist_ok=data['exist_ok'])
return datal 'name']

i

(continues on next page)

6 Chapter 1. Gladier

https://globus-automate-client.readthedocs.io/en/latest/cli_reference.html?highlight=visible_to#cli-reference
https://developers.globus.org

Gladier, Release 0.7.1

(continued from previous page)

@generate_flow_definition
class MakeDirs(GladierBaseTool):
"""List files on the filesystem
funcx_functions = [makedirs]
required = ['name']
flow_input = {
'mode': 00777,
'exist_ok': False

mirn

Gladier Tools are the glue that holds together Globus Flows and FuncX functions. Tools bundle everything the FuncX
function needs to run, so the Glaider Client can register the function, check the requirements, and run it inside the
Globus Flow.

Each tool is composed of zero or more funcx_functions and a flow_definition. Flows can be specified explicitly,
or if they are a single FuncX function they can be generated automatically using the @generate_flow_definition
decorator. When applied to tools, @generate_flow_definition will create a simple one-state flow for the function
to run.

The main attributes of a Gladier Tool are here:
e funcx_functions (list of callables) — A list of functions this tool uses.

* flow_input (dict) — Default input that should be used in the flow. This is automatically overrided if the user
supplies flow input to the Gladier Client

* required (list of strings) — A list of critical Funcx flow_input keys that must be present for the function to be run.
Gladier will raise an exception if these are not present when the user attempts to run the flow.

» flow_definition (dict) — (Optional) A complete Globus Flow for running this tool. Provides a built-in flow new
users can use to instantly run your tool.

1.6 Writing Custom Tools

Gladier was designed with the intention that users would write their own tools as needed. As your pipeline grows, you
may include a mix of built-in Gladier Tools, your own custom tools, or even your own custom package of tools.

Starting with the simple tool below:

from gladier import GladierBaseTool, generate_flow_definition

def makedirs(**data):
"""Make a directory on the filesystem
import os
os.makedirs(data['name'], mode=data['mode'], exist_ok=data['exist_ok'])
return data['name']

i

@generate_flow_definition
class MakeDirs(GladierBaseTool):
"""lList files on the filesystem

mirn

(continues on next page)

1.6. Writing Custom Tools 7

Gladier, Release 0.7.1

(continued from previous page)

funcx_functions = [makedirs]
required = ['name']
flow_input = {
'mode’': 00777,
'exist_ok': False

In the same module, this can be added to a client by simply adding the MakeDirs class to gladier_tools:

from gladier import GladierBaseClient

@generate_flow_definition

class ExampleClient(GladierBaseClient):
gladier_tools = [MakeDirs]

Import strings are an optional feature of Gladier. They’re used for built-in tools to keep a mental boundary from code
executing remotely via FuncX Functions. You can create your own repository of tools and share it provided your tools
are organized within a python package. See the Gladier Tools repository as an example.

1.7 Flow Generation

For simple flows, Gladier can handle the process of stitching together the flows of several tools into one big flow, or
even generating a flow from scratch for a simple Gladier tool. Flow generation does not replace manually authored
flows, but provides a path for automating simple flows that don’t require a lot of branching.

Flow generation is available for both clients and tools with the @generate_flow_definition decorator. Although
it’s applied the same way, the decorator behaves a little differently for a client and a tool.

¢ Gladier Tool — Generates a flow for each function defined in funcx_functions

¢ Gladier Client — Combines flows for each Gladier Tool defined in gladier_tools

1.7.1 Flow Generation on Gladier Tools

For Gladier Tools that only need one flow step per FuncX Function, flow generation can be a good option. Gladier will
automatically determine information about the functions on the tool, and incorporate them into the flow. The usage
looks like this:

from gladier import GladierBaseTool, generate_flow_definition

def 1ls(data):
"""Do an 'ls' on the filesystem, given a “dir™
import os
the_dir = data.get('dir', '~')
return os.listdir(the_dir)

mirn

@generate_flow_definition

class FileSystemListCommand(GladierBaseTool):
"""List files on the filesystem"""
funcx_functions = [1s]

8 Chapter 1. Gladier

Gladier, Release 0.7.1

The decorator @generate_flow_definition will automatically set the flow_definition attribute when a Glad-
ierClient includes it in tools. The flow it generates will be identical to the following:

{
"Comment": "List files on the filesystem",
"StartAt": "Ls",
"States": {

"Ls": {

"ActionScope": "https://auth.globus.org/scopes/facd7ccc-c5f4-42aa-916b-
—afe270e2c2a9/automate2”,

"ActionUrl": "https://api.funcx.org/automate",

"Comment": "Do an 'ls' on the filesystem, given a " ‘“dir ",

"Type": "Action",

"ExceptionOnActionFailure": false,

"Parameters": {

"tasks": [
{
"endpoint.$": "$.input.funcx_endpoint_compute",
"func.$": "$.input.ls_funcx_id",
"payload.$": "$.input”
}
]
1,
"End": true,

"ResultPath": "$.Ls",
"WaitTime": 300

Flow Generation Modifiers

You’ll notice that flow generation makes some assumptions you might want to change. For example, 1s is not a
compute heavy task, and might be better to run on the head node. Overriding some attributes of the flow can be done
with modifiers.

@generate_flow_definition(modifiers={

1s: {'endpoint': 'funcx_endpoint_non_compute'}
1))
class FileSystemListCommand(GladierBaseTool):
List files on the filesystem"""
funcx_functions = [1s]

o

1.7. Flow Generation 9

Gladier, Release 0.7.1

1.7.2 Flow Generation on Gladier Clients

When Flow Generation is applied to Gladier Clients it does not generate the flow from scratch, but instead combines
the flow on each Gladier Tool into one big flow.

Note that modifiers can also be used with Gladier Clients to customize some attributes.

@generate_flow_definition(modifiers={

i)

'generate_metadata': {'endpoint': 'funcx_endpoint_non_compute'},
'publish_to_search': {'endpoint': 'funcx_endpoint_non_compute’,
'payload': 'generate_metadata'}

class ProcessData(GladierBaseClient):

gladier_tools = [
'mytools.TransferData’,
'mytools.processing.ProcessData’,
'mytools.processing.GenerateGraphs',
'mytools.processing.GenerateMetadata',
'mytools.processing.PublishResults’,

Modifiers

A complete reference is coming soon!

1.8 SDK Reference

class gladier.client.GladierBaseClient (authorizers=None, auto_login=True, auto_registration=True)

Bases: object

The Gladier Client ties together commonly used funcx functions and basic flows with auto-registration tools to
make complex tasks easy to automate.

Default options are intended for CLI usage and maximum user convenience.
Parameters
* authorizers - Provide live globus_sdk authorizers with a dict keyed by scope.

* auto_login — Automatically trigger login() calls when needed. Should not be used with
authorizers.

* auto_registration — Automatically register functions or flows if they are not previously
registered or obsolete.

Raises
gladier.exc.AuthException - if authorizers given are insufficient
login(**login_kwargs)
Login to the Gladier client. This will ensure the user has the correct tokens configured but it DOES
NOT guarantee they are in the correct group to run a flow. Can be run both locally and on a server. See
help(fair_research_login.NativeClient.login) for a full list of kwargs.
logout)

Log out and revoke this client’s tokens. This object will no longer be usable until a new login is called.

10

Chapter 1. Gladier

https://docs.python.org/3/library/functions.html#object

Gladier, Release 0.7.1

get_input(Q)

Get funcx function ids, funcx endpoints, and each tool’s default input. Default input may not be enough
to run the flow. For example if a tool does processing on a local filesystem, the file will always need to be
provided by the user when calling run_flow().

Defaults rely on GladierBaseTool.flow_input defined separately for each tool.
Returns
input for a flow wrapped in an ‘input’ dict. For example: {‘input’: {‘foo’: ‘bar’}}
run_f£low(flow_input=None, use_defaults=True, **flow_kwargs)
Start a Globus Automate flow. Flows and Functions must be registered prior or self.auto_registration must

be True.

If auto-registering a flow and self.auto_login is True, this may result in two logins. The first is for autho-
rizing basic tooling, and the second is to autorize the newly registered automate flow.

Parameters

e flow_input — A dict of input to be passed to the automate flow. self.check_input() is
called on each tool to ensure basic needs are met for each. Input MUST be wrapped inside
an ‘input’ dict, for example { ‘input’: {‘foo’: ‘bar’}}.

» use_defaults — Use the result of self.get_input() to populate base input for the flow. All
conflicting input provided by flow_input overrides values set in use_defaults.

o **flow_kwargs — Set several keyed arguments that include the label to be used in the
automate app. If no label is passed the standard automate label is used. Also ensure label
<= 64 chars long.

Raise
gladier.exc.ConfigException by self.check_input()

Raises
gladier.exc.FlowObsolete

Raises
gladier.exc.NoFlowRegistered

Raises
gladier.exc.RegistrationException

Raises
gladier.exc.FunctionObsolete

Raises
gladier.exc.AuthException

Raises
Any globus_sdk.exc.BaseException

get_status (action_id)

Get the current status of the automate flow. Attempts to do additional work on funcx functions to deserialize
any exception output.

Parameters
action_id - The globus action UUID used for this flow. The Automate flow id is always the
flow_id configured for this tool.

Raises
Globus Automate exceptions from self.flows_client.flow_action_status

1.8.

SDK Reference 11

Gladier, Release 0.7.1

Returns
a Globus Automate status object (with varying state structures)

progress (action_id, callback=None)

Continuously call self.get_status() until the flow completes. Each status response is used as a parameter to
the provided callback, by default will use the builtin callback to print the current state to stdout.

Parameters

» action_id - The action id for a running flow. The flow is automatically pulled based on
the current tool’s flow_definition.

¢ callback — The function to call with the result from self.get_status. Must take a single
parameter: mycallback(self.get_status())

12 Chapter 1. Gladier

CHAPTER
TWO

GLADIER TOOLS

Gladier tools is an optional package containing commonly used operations. You can install Gladier Tools with the

following:

pip install gladier-tools

Once the Gladier Tools packages is installed, individual tools can be added to your client like so:

@generate_flow_definition
class TarAndTransfer(GladierBaseClient):
gladier_tools = [
'gladier_tools.posix.Tar',
'gladier_tools.globus.Transfer"',

The following Gladier Tools are available:

Posix

'gladier_tools.posix.Tar',
'gladier_tools.posix.UnTar',
'gladier_tools.posix.Encrypt',
'gladier_tools.posix.Decrypt',
'gladier_tools.posix.AsymmetricEncrypt',
'gladier_tools.posix.AsymmetricDecrypt',
'gladier_tools.posix.HttpsDownloadFile',

Globus
'gladier_tools.globus.Transfer',

Publish
'gladier_tools.publish.Publish',

See the sections below for detailed information about each tool.

13

Gladier, Release 0.7.1

2.1 Globus Tools

Globus Tools map to the list of Globus Maintained Action Providers

They may not even contain FuncX functions, but are rather a convenient way to add common flow operations to your
Gladier Client without copying the JSON yourself.

2.1.1 Globus Transfer

class gladier_tools.globus.transfer.Transfer (alias=None, alias_class=None)
Bases: GladierBaseTool

Transfer is a simple single-state flow with no FuncX Functions, which talks directly to the Transfer Action
Provider. It transfers only a single file or directory.

Parameters
» transfer_source_endpoint_id — Globus Source Endpoint UUID
» transfer_destination_endpoint_id — Globus Destination Endpoint UUID
e transfer_source_path — Globus Source Path
» transfer_destination_path — Globus Destination Path

» transfer_recursive - True if this is a directory, false otherwise.

2.2 Publish Tools

Publish Tools talk to both Globus Search and a Globus Transfer as one single operation. Typically, this is the final state
in a processing flow as a way to submit data for viewing in a portal.

2.2.1 Publish
Publish takes files or directories and transfers them to another publication endpoint and ingests metadata about the files
into Globus Search. Both the index in Globus Search and the Globus Endpoint in Globus Pilot must be setup first.

Setup only needs to be done once, then publish can be used freely afterwards. Both Globus Pilot and Globus Search
CLI can be installed with the following:

pip install globus-search-cli globus-pilot

Globus Search CLI is responsible for setting up indices in Globus Search. Globus Pilot is a tool which generates
metadata about files and directories and handles both the transfer to an endpoint and the ingest to search.

Create the index with the following:

globus-search index create my-index

Setup your publication endpoint with the index you created above with:

globus-pilot index setup <UUID from the step above>

After that, you should be ready to publish to your data. See documentation for both of the tools above here:

¢ Globus Search CLI

14 Chapter 2. Gladier Tools

https://globus-automate-client.readthedocs.io/en/latest/globus_action_providers.html
https://github.com/globus/globus-search-cli

Gladier, Release 0.7.1

¢ Globus Pilot

class gladier_tools.publish.Publish(alias=None, alias_class=None)
Bases: GladierBaseTool

This function uses the globus-pilot tool to generate metadata compatible with portals on https://acdc.alcf.anl.
gov/. Requires globus_pilot>=0.6.0.

FuncX Functions:
* publish_gather_metadata (funcx_endpoint_non_compute)
Publication happens in three steps:
» PublishGatherMetadata — A funcx function which uses globus-pilot to gather metadata on files or folders
¢ PublishTransfer — Transfers data to the Globus Endpoint selected in Globus Pilot
* PublishIngest — Ingest metadata gathered in fist step to Globus Search

Note: This tool needs internet access to fetch Pilot configuration records, which contain the destination endpoint
and other project info. The default FuncX endpoint name is funcx_endpoint_non_compute. You can change this
with the following modifier:

@generate_flow_definition(modifiers={
'publish_gather_metadata': {'endpoint': 'funcx_endpoint_non_compute'},

D)

More details on modifiers can be found at https://gladier.readthedocs.io/en/latest/gladier/flow_generation.html

NOTE: This tool nests input under the ‘pilot’ keyword. Submit your input as the following:

{
"input': {
'pilot': {
'dataset': 'foo',
'index': 'my-search-index-uuid',
'project': 'my-pilot-project',
'source_globus_endpoint': 'ddb59aef-6d04-11e5-ba46-22000b92cbec’,
}
}
Parameters

» dataset — Path to file or directory. Used by Pilot to gather metadata, and set as the source
for transfer to the publication endpoint configured in Pilot.

» destination - relative location under project directory to place dataset (Default /)

» source_globus_endpoint — The Globus Endpoint of the machine where you are executing
* index — The index to ingest this dataset in Globus Search

» project — The Pilot project to use for this dataset

» groups — A list of additional groups to make these records visible_to.

» funcx_endpoint_non_compute — A funcX endpoint uuid for gathering metadata. Re-

quires internet access.

Requires: the ‘globus-pilot’ package to be installed.

2.2. Publish Tools 15

https://github.com/globus/globus-pilot
https://acdc.alcf.anl.gov/
https://acdc.alcf.anl.gov/
https://gladier.readthedocs.io/en/latest/gladier/flow_generation.html

Gladier, Release 0.7.1

2.3 Posix Tools

Below are Gladier Tools for common operations on posix filesystems.

2.3.1 Tar

class gladier_tools.posix.tar.Tar (alias=None, alias_class=None)
Bases:

The Tar tool makes it possible to create Tar archives from folders. FuncX Functions:

* tar (funcx_endpoint_compute)

Parameters
* tar_input - Input directory to archive.

* tar_output — (optional) output file to save the new archive. Defaults to the original input
file with an extension (myfile.tgz) if not given.

» funcx_endpoint_compute — By default, uses the compute funcx endpoint.

Returns path
The name of the newly created archive.

2.3.2 Untar

class gladier_tools.posix.untar.UnTar (alias=None, alias_class=None)
Bases:

The UnTar tool makes it possible to extract data from Tar archives. FuncX Functions:

* untar (funcx_endpoint_compute)

Parameters
e untar_input - Input directory to archive.

* untar_output — (optional) output file to save the new archive. Defaults to the original #
nogqa input file with an extension ‘.tgz’ removed.

» funcx_endpoint_compute — By default, uses the compute funcx endpoint. # noga

Returns path
The name of the newly created archive.

2.3.3 HTTPS Download File

class gladier_tools.posix.https_download_file.HttpsDownloadFile (alias=None, alias_class=None)

Bases:

16 Chapter 2. Gladier Tools

Gladier, Release 0.7.1

2.3.4 Encrypt

class gladier_tools.posix.encrypt.Encrypt(alias=None, alias_class=None)

Bases:

The Encrypt tool takes in a file and a password to perform 128-bit AES symmetric key encryption on the file.
The original contents of the file are overwritten with the encrypted text. Adds an extension (.aes) to the name of
the file. It has not been found to be compatible with 3rd party encryption/decryption tools.

FuncX Functions:

e encrypt (funcx_endpoint_compute)

Parameters
* encrypt_input — Path to the file which needs to be encrypted.

* encrypt_output — Custom path to outputfile. Default is the same file with the ‘.aes’ suffix
added

* encrypt_key — Symmetric key or “password” which can be used to decrypt the encrypted
file.

» funcx_endpoint_compute — By default, uses the compute funcx endpoint.

Returns output_path
Location of the encrypted file.

2.3.5 Decrypt

class gladier_tools.posix.decrypt.Decrypt (alias=None, alias_class=None)

Bases:

Decrypt tool takes in an encrypted file and a password to perform decryption on the file. The decryption only
works on files that have been encrypted by the Gladier Encrypt tool. It has not been found to be compatible with
3rd party encryption/decryption tools.

FuncX Functions:

* decrypt (funcx_endpoint_compute)

Parameters
* decrypt_input — Path to the file which needs to be decrypted.

* decrypt_key — Symmetric key or “password” which will be used to decrypt the encrypted
file. Must be the same key that was used during encryption.

* decrypt_output — (optional) The full path to the decrypted file. If not provided, the
decrypted file will have the same name as the input file, with the last 4 characters trun-
cated(assuming it was a .aes file).

» funcx_endpoint_compute — By default, uses the compute funcx endpoint.

Returns output_path
Location of the decrypted file.

2.3. Posix Tools 17

Gladier, Release 0.7.1

2.3.6 Asymmetric Encrypt

class gladier_tools.posix.asymmetric_encrypt.AsymmetricEncrypt (alias=None, alias_class=None)
Bases:

The Asymmetric Encrypt tool takes in a file and the path to the RSA public key to perform RSA encryption on
the file. Adds an extension (.rsa) to the name of the file. It has not been found to be compatible with 3rd party
encryption/decryption tools.

FuncX Functions:

* asymmetric_encrypt (funcx_endpoint_compute)

Parameters

* public_key_path — Path to the .pub file which contains the RSA public key. Defaults to
~/.ssh/id_rsa.pub

» asym_encrypt_£file — File which needs to be encrypted.
» funcx_endpoint_compute — By default, uses the compute funcx endpoint.

Returns output_path
Location of the encrypted file.

2.3.7 Asymmetric Decrypt

class gladier_tools.posix.asymmetric_decrypt.AsymmetricDecrypt (alias=None, alias_class=None)
Bases:

The Asymmetric Decrypt tool takes in a file encrypted by the asymmetric encryption tool and the path to the
RSA public key to perform decryption on the file. The output file can be passed in as a flow_input. If no output
file passed, the last 4 characters (.rsa) of the input file are removed. It has not been found to be compatible with
3rd party encryption/decryption tools.

FuncX Functions:

* asymmetric_decrypt (funcx_endpoint_compute)

Parameters

e private_key_path — Path to the id_rsa file which contains the RSA private key. Defaults
to ~/.ssh/id_rsa if not passed in.

» asym_decrypt_file - File which needs to be decrypted.
» funcx_endpoint_compute — By default, uses the compute funcx endpoint.

* asym_decrypt_password — (Optional) If the private file is password protected, pass it in
through this argument.

» output_file — (Optional) Path to the output file which holds the decrypted contents.

Returns output_path
Location of the decrypted file.

18 Chapter 2. Gladier Tools

CHAPTER
THREE

EXAMPLES

3.1 Pre Requisites

If you want to run the examples below on your own computer, you need to follow the Serup guide. The Serup guide
covers setting up FuncX and GCP on the machine you are using.

Note: For a quick 5-minute start, you can run the Binder Examples, which are all run in a pre-built environment and
require no setup.

3.2 Example Flows

3.2.1 Tar and Transfer

This example highlights the usage of the Tar and Transfer Gladier tools in a single flow. The tar step creates an archive
of the input file, and the transfer step transfers the archived file between Globus Endpoints.

from gladier import GladierBaseClient, generate_flow_definition
from pprint import pprint

@generate_flow_definition
class TarAndTransfer(GladierBaseClient):
gladier_tools = [
'gladier_tools.posix.Tar',
'gladier_tools.globus.Transfer',

]
if __name__ == '__main__':
flow_input = {
"input': {
The directory below should exist with files. It will be archived by the.
—Tar Tool.

"tar_input': '~/myfiles’,
Set this to your own funcx endpoint where you want to tar files

'funcx_endpoint_compute': ",
Set this to the globus endpoint where your tarred archive has been created

(continues on next page)

19

https://github.com/globus-gladier/gladier-examples

Gladier, Release 0.7.1

(continued from previous page)

"

'transfer_source_endpoint_id': ",
By default, this will transfer the tar file to Globus Tutorial Endpoint 1
"transfer_destination_endpoint_id': 'ddb59aef-6d04-11e5-ba46-22000b92cbec’,
By default, the Tar Tool will append '.tgz' to the archive it creates
"transfer_source_path': '~/myfiles.tgz',

"transfer_destination_path': '~/my_archives/myfiles.tgz',
"transfer_recursive': False,

}
Instantiate the client
tar_and_transfer = TarAndTransfer()

Optionally, print the flow definition
pprint(tar_and_transfer.flow_definition)

Run the flow
flow = tar_and_transfer.run_flow(flow_input=flow_input)

Track the progress

action_id = flow['action_id']
tar_and_transfer.progress(action_id)

pprint (tar_and_transfer.get_status(action_id))

Steps

Start the workflow by overriding the Gladier Client with a list of the tools you want to use. In this case, we want to use
the Tar, and Transfer tools.

@generate_flow_definition
class TarAndTransfer(GladierBaseClient):
gladier_tools = [
'gladier_tools.posix.Tar',
'gladier_tools.globus.Transfer',

The @generate_flow_definition decorator takes the flow definitions of the individual tools and constructs a flow
definition for the new flow, so we do not have to define a custom flow definition. To view the constructed flow definition,
use pprint (tat.flow_definition). Refer to the Flow Generation doc for more details on the same.

The next step is to define the input for the flow. It might be helpful to refer to the docs for each of the tools to find out
what needs to be passed in as input. For example, here are the documentations for the Tar and Transfer tools. Feel free
to use the below blueprint:

flow_input = {

"input': {
Set this to the file/folder that has to be tarred
'tar_input': '"',

Set this to your own funcx endpoint where you want to tar files

'funcx_endpoint_compute': ,
Set this to the globus endpoint where your tarred archive has been created

'transfer_source_endpoint_id': ,
By default, this will transfer the tar file to Globus Tutorial Endpoint 1

(continues on next page)

20 Chapter 3. Examples

https://gladier.readthedocs.io/en/docs/flow_generation.html
https://gladier.readthedocs.io/en/docs/tools/posix/tar.html
https://gladier.readthedocs.io/en/docs/tools/globus/transfer.html

Gladier, Release 0.7.1

(continued from previous page)

'transfer_destination_endpoint_id': 'ddb59aef-6d04-11e5-ba46-22000b92cbec’,
Provide the paths to the tarred file as input for the transfer step
'transfer_source_path': '',

'transfer_destination_path': '',

'"transfer_recursive': False,

All that is left is to create an instance of the GladierBaseClient class and run the flow. Use the below code to view
the progress of the flow:

tat = TarAndTransfer()
pprint(tat.flow_definition)

flow = tat.run_flow(flow_input=flow_input)
action_id = flow['action_id']
tat.progress(action_id)
pprint(tat.get_status(action_id))

3.2.2 Encrypt and Transfer

This example highlights the usage of built in tools (Tar, Encrypt and Transfer) along with a custom defined tool (Make-
Files) in the same flow.

from gladier import GladierBaseClient, generate_flow_definition, GladierBaseTool
from pprint import pprint

def make_files(**data):
from pathlib import Path

input_path = Path(data['make_input']) .expanduser()
input_path.mkdir(exist_ok=True, parents=True)

for number in range(3):
with open(input_path / f'file{number}.txt', 'w') as f:
f.write(£f'This is file no. {number}!")

return str(input_path)

@generate_flow_definition
class MakeFiles(GladierBaseTool):
funcx_functions = [make_files]
required_input = [
'make_input',
'funcx_endpoint_compute'

@generate_flow_definition
class EncryptAndTransfer(GladierBaseClient):

(continues on next page)

3.2. Example Flows 21

Gladier, Release 0.7.1

(continued from previous page)

gladier_tools = [
MakeFiles,
'gladier_tools.posix.Tar',
'gladier_tools.posix.Encrypt',
'gladier_tools.globus.Transfer"',

if _name__ == '__main__':
flow_input = {
"input': {
Set this to the folder in which you want to run the makeFiles function in
'make_input': '/tmp/myfiles',
Set this to the same folder as above
"tar_input': '/tmp/myfiles’',
Set this to the resultant archive of the above folder
'encrypt_input': '/tmp/myfiles.tgz',
Set this to the symmetric key you want to use to encrypt/decrypt the file
'encrypt_key': 'my_secret',
Set this to your own funcx endpoint where you want to encrypt files
'funcx_endpoint_compute': ",
Set this to the globus endpoint where your encrypted archive has been.

oW R

—created
'transfer_source_endpoint_id': ",
By default, this will transfer the encrypt file to Globus Tutorial..
—Endpoint 1
'transfer_destination_endpoint_id': 'ddb59aef-6d04-11e5-ba46-22000b92cbec’,
"transfer_source_path': '/tmp/myfiles.tgz.aes',
"transfer_destination_path': 'my_encrypted_files/myfiles.tgz.aes',

"transfer_recursive': False,

}

Create the Client
encrypt_and_transfer = EncryptAndTransfer()

Optionally print the flow definition
pprint(encrypt_and_transfer.flow_definition)

Run the flow
flow = encrypt_and_transfer.run_flow(flow_input=flow_input)

Track progress

action_id = flow['action_id']
encrypt_and_transfer.progress(action_id)
pprint(encrypt_and_transfer.get_status(action_id))

22 Chapter 3. Examples

Gladier, Release 0.7.1

Steps

We start by writing our own custom tool. For the example, MakeFiles is a trivial tool that creates three files in
a given folder. The funcx function that achieves this functionality is make_files. We then define the tool using
GladierBaseTool

@generate_flow_definition
class MakeFiles(GladierBaseTool):
funcx_functions = [make_files]
required_input = [
'make_input',
'funcx_endpoint_compute’

Defining a workflow is similar to the previous case, where we override the GladierBaseClient class. In this case,
we want to use the MakeFiles, Tar, Encrypt, and Transfer tools.

@generate_flow_definition
class CustomTransfer(GladierBaseClient):
gladier_tools = [
MakeFiles,
'gladier_tools.posix.Tar',
'gladier_tools.posix.Encrypt',
'gladier_tools.globus.Transfer"',

The @generate_flow_definition decorator takes the flow definitions of the individual tools and constructs a flow
definition for the new flow, so we do not have to define a custom flow definition. To view the constructed flow definition,
use pprint (ct.flow_definition). Refer to the Flow Generation doc for more details on the same.

The next step is to define the input for the flow. It might be helpful to refer to the docs for each of the tools to find out
what needs to be passed in as input. For example, here are the documentations for the Tar, Encrypt and Transfer tools.
Feel free to use the below blueprint:

flow_input = {
"input': {

Set this to the folder in which you want to run the makeFiles function in
'make_input': '',
Set this to the same folder as above
"tar_input': '',
Set this to the resultant archive of the above folder
'encrypt_input': '',
Set this to the symmetric key you want to use to encrypt/decrypt the file
'encrypt_key': "',
Set this to your own funcx endpoint where you want to encrypt files
'funcx_endpoint_compute': '',
Set this to the globus endpoint where your encrypted archive has been created
'"transfer_source_endpoint_id': '',
By default, this will transfer the encrypt file to Globus Tutorial Endpoint 1
'"transfer_destination_endpoint_id': 'ddb59aef-6d04-11e5-ba46-22000b92c6ec’,
"transfer_source_path': '',
'"transfer_destination_path': "',

"transfer_recursive': False,

3.2. Example Flows 23

https://gladier.readthedocs.io/en/docs/flow_generation.html
https://gladier.readthedocs.io/en/docs/tools/posix/tar.html
https://gladier.readthedocs.io/en/docs/tools/posix/encrypt.html
https://gladier.readthedocs.io/en/docs/tools/globus/transfer.html

Gladier, Release 0.7.1

All that is left is to create an instance of the GladierBaseClient class and run the flow. Use the below code to view
the progress of the flow:

ct = CustomTransfer()
pprint(ct.flow_definition)

flow = ct.run_flow(flow_input=flow_input)
action_id = flow['action_id']
ct.progress(action_id)
pprint(ct.get_status(action_id))

24 Chapter 3. Examples

CHAPTER
FOUR

UPGRADE MIGRATIONS

4.1 Migrating to v0.5.0

The only major change in v0.5.0 was the removal of the HelloWorld Tools from the main Gladier package. The following
are no longer present:

e gladier.tools.hello_world.HelloWorld
e gladier.tools.manifest.ManifestTransfer
¢ gladier.tools.manifest.ManifestToFuncXTasks

There currently aren’t plans to rewrite them in the Gladier Tools package, but open an issue if you would like us to
consider changing that!

4.2 Migrating to v0.4.0

Gladier v0.3.x depended on FuncX v0.0.5 and FuncX Endpoint v0.0.3. Gladier v0.4.x now uses Funcx v0.2.3-v0.3.0+
(funcx-endpoint v0.2.3-v0.3.0+). There are a number of breaking changes between these two versions of FuncX,
including funcx endpoints, flow definitions, and backend services.

4.2.1 FuncX Endpoints

All FuncX endpoints will need to be recreated with the never version of FuncX. Gladier typically names these endpoints
as the following:

¢ funcx_endpoint_non_compute
e funcx_endpoint_compute

Since these use different backend services, using endpoints that don’t match the FuncX version will result in errors.
Using 0.0.3 endponits on 0.2.3+ will result in permission denied, using 0.2.3+ on 0.0.3 will result in Server 500s.

25

Gladier, Release 0.7.1

4.2.2 Argument Passing and Function Definitions

Previously, all arguments in a Flow were passed to FuncX functions as a dict. It looked like the following:

'Parameters': {'tasks': [{'endpoint.$': '$.input.funcx_endpoint_non_compute’,
'function': '8227609b-4869-4c6f-9alb-87dc49fcc687"',
'payload.$': '$.input'}]},

def my_function(data):

In the above, data would get the entire dict from $.input, which was typically whatever input was passed to start the
flow. In the new version of FuncX, this has changed. All arguments are either positional or keyword arguments and
should be named. This is difficult in automate, since naming arguments requires specifying them explicitly in the flow
definition. An easy migration path is the following:

'Parameters': {'tasks': [{'endpoint.$': '$.input.funcx_endpoint_non_compute',
'function': '8227609b-4869-4c6f-9alb-87dc49fcc687"',
'payload.$': '$.input'}]},

def my_function(**data):

Changing data to a keyword argument will allow re-creating the same behavior as before.

4.2.3 FuncX Functions

Like FuncX Endpoints, FuncX Functions also need to be changed between versions. This is an automatic process in
most cases if you are running the latest version of Gladier and saw a big giant warning when upgrading. Gladier will
automatically delete funcx functions that don’t match the newly supported version of FuncX Gladier uses.

However, it’s necessary to do a manual upgrade to remove these functions in some cases. To upgrade manually, edit
the file ~/.gladier-secrets.cfg, and remove all config items that end in funcx_id and funcx_id_checksum:

hello_world_funcx_id = 3bccfcdb-bcOe-4549-9297-8e08c6£50bd5
hello_world_funcx_id_checksum =,
—c590423de52051e7b7bb044dc173673d2c9ad965f7£71bee665494815b3a2046

4.2.4 Flow Definitions

Some items in Automate flow definitions also changed. See below for a list of the attributes.
FuncX Version 0.0.5 flow definitions:

e ActionUrl — ‘https://api.funcx.org/automate’

» ActionScope — ‘https://auth.globus.org/scopes/facd7ccc-c5f4-42aa-916b-a0e270e2c2a9/automate?’
FuncX Version 0.2.3+ flow definitions:

e ActionUrl — ‘https://automate.funcx.org’

e ActionScope — ‘https://auth.globus.org/scopes/b3db7e59-a6f1-4947-95¢2-59d6b7a70f8c/action_all’
Additionally for FuncX Payloads, Function UUIDs are passed with a different name.

‘func.$’: ‘$.input.’

26 Chapter 4. Upgrade Migrations

https://api.funcx.org/automate
https://auth.globus.org/scopes/facd7ccc-c5f4-42aa-916b-a0e270e2c2a9/automate2
https://automate.funcx.org
https://auth.globus.org/scopes/b3db7e59-a6f1-4947-95c2-59d6b7a70f8c/action_all

Gladier, Release 0.7.1

Needs to be changed to:

‘function.$’: ‘$.input.’

4.2.5 FuncX Flow Result Format

The format of the return value from FuncX functions has changed format. This only affects Flow states that depend on
the output of a FuncX function/flow state.

Previous flow states were not returned in a list, and were referenced with the following:

"InputPath': '$.MyFuncXFunctionOutput.details.result',

FuncX now returns these in a list, and they need to be index. The above needs to be changed to the following:

"InputPath': '$.MyFuncXFunctionOutput.details.result[0]"',

4.2. Migrating to v0.4.0 27

Gladier, Release 0.7.1

28 Chapter 4. Upgrade Migrations

CHAPTER
FIVE

GLOSSARY

Gladier builds on a science services framework, in the form of Globus Auth, Transfer, Search, Groups, and Flows,
plus funcX function-as-a-service. These services provide a reliable, secure, and high-performance substrate to access
and manage data and computing resources. Here we highlight several of these services and describe how they are used
to create Gladier deployments.

5.1 Globus

Globus provides a collection of data services built for science including: Globus Auth, Transfer, Search, Groups, and
Flows, and funcX to enable distributed function-as-a-service execution. Globus Services are highly reliable, profes-
sionally operated cloud-hosted services that support the work of over 150,000 researchers worldwide as foundational
capabilities for scientific applications and workflows; using them greatly reduces the burden on local systems, admin-
istrators, and programmers.

5.2 Globus Flows

Flows addresses the problem of securely and reliably automating sequences of data management tasks that may span
locations, storage systems, administrative domains, and timescales, and integrate both mechanical and human inputs.
Client libraries deployed on Globus endpoints and other sources enable the detection of events and invocation of a flow.
The Flows service manages execution of user-supplied automation flows either manually or as a result of data events, and
the invocation of actions from those automation flows, including actions provided by Globus endpoints and services.
The service is extensible via the definition of new events and actions to meet the needs of specific communities.

5.3 FuncX

funcX is a function-as-a-service platform that implements a federated compute substrate, enabling computation to be
registered as Python functions and invocations to be dispatched to remote computers for execution. The service pro-
vides a single point-of-contact, supporting function registration, sharing, and discovery as well as reliable and secure
execution on connected endpoints. The funcX endpoint software, built on Parsl, allows functions to be executed in con-
tainers and for resources to be dynamically provisioned on cloud and cluster systems. These funcX endpoints provide
serverless capabilities whereby researchers fire-and-forget tasks that are dynamically allocated across the supercom-
puter using an opportunistic backfill queue to utilize spare capacity.

29

Gladier, Release 0.7.1

5.4 Globus Queues and Triggers

Queues provides a reliable, cloud-based mechanism to manage and store events. The Queues service allows users to
provision a dedicated queue for their instrument. Clients can then raise events to the queue using HTTP POST requests
where they will be maintained until a subscriber consumes them. This enables experimental facilities and instruments
to raise events as data are created without requiring heavy-weight installations on the edge device.

The Triggers service provides a cloud-based consumer of Queues events. Users can configure a Trigger to monitor a
queue and initiate Flows as events are received. To create a trigger one defines:

* An event queue for the trigger to monitor

* A condition for when the trigger will fire

* An action to perform when the condition is met (e.g., a flow uuid)

* A template to create an input JSON document for the action. This often includes default values.

The combination of the Queues and Triggers services simplifies creating new Gladier deployments.

5.5 Globus Transfer

Transfer implements a location-agnostic data substrate that enables data to be accessed, shared, and moved among
disparate storage systems, including at instruments, supercomputers, and on data services. Globus Transfer allows
users and applications to modify data access permissions on remote storage systems and to move data reliably and
securely between systems via a single APL

5.6 Globus Auth

Auth Auth allows for users to delegate permissions for clients to access services in the Gladier architecture, and for
services to access other services on their behalf as well. For example, it allows Globus Flows to manage Globus
Transfers and to execute analyses via funcX on systems accessible only to the user.

30 Chapter 5. Glossary

CHAPTER
SIX

CHANGELOG

All notable changes to this project will be documented in this file. See standard-version for commit guidelines.

6.1 0.7.1 (2022-08-25)

6.2 Bug Fixes
* Error on first time flow deployment if using group perms (b444{2b)
6.2.1 0.7.0 (2022-08-22)

6.3 BREAKING CHANGES

¢ Older funcx versions before v1.0 are no longer supported.

— No code changes are required to migrate to Gladier v0.7.0 or FuncX v1.0

6.4 Features

* Add support for globus-automate-client 0.16 (dc9e82c)
¢ Upgrade to funcx v1 (c947077)

6.5 Bug Fixes

* Aliases not working with tools that use @generate_flow_definition (da30756)

31

https://github.com/conventional-changelog/standard-version
https://github.com/globus-gladier/gladier/commit/b444f2b8e09ab77efaa5c7d7b4f9698a1ddc9164
https://github.com/globus-gladier/gladier/commit/dc9e82ca02ebf63217d9fabadada725579f038b3
https://github.com/globus-gladier/gladier/commit/c947077c733b50f3aa20d4e041dba8eb5c47da0b
https://github.com/globus-gladier/gladier/commit/da3075662703298291d776b1c25fb95348a6fdaa

Gladier, Release 0.7.1

6.6 0.6.3 (2022-07-20)
6.7 Bug Fixes
* Fix error when docstring is too long (al9a4bf)
6.8 0.6.2 (2022-05-06)
6.9 Bug Fixes
* Possible flows client 401 due to client caching (3b5a307)
6.10 0.6.1 (2022-05-05)

6.11 Features
* Add support for globus-automate-client 0.15.x (9ecd2el)
6.11.1 0.6.0 (2022-05-05)

6.12 BREAKING CHANGES

* The following versions of FuncX and the Globus Automate Client will no longer be supported:

* Globus Automate Client: Requires 0.13.0 and above

* FuncX: Requires 0.3.6 and above

Older versions of these packages are only compatible with Globus SDK v2, and require updating any code that relies

on the older Globus SDK version. See the SDK upgrade guide here:

6.13 Features

* Added ‘aliased’ tool chaining feature (48cbaaf)

6.14 Bug Fixes

* Add packaging dependency (95f6ecl)

* Added check when adding tool without flow states (c612383)

* Redeploy flow on 404s (6c0d3a7)

* tools/flows client not properly being cached in gladier clients (a6e5cec)

32

Chapter 6. Changelog

https://github.com/globus-gladier/gladier/commit/a19a4bfd7ca43a8f82ef1179071bd05c302951ef
https://github.com/globus-gladier/gladier/commit/3b5a307072e82cdc40b1292bc7225eb8b293ebe4
https://github.com/globus-gladier/gladier/commit/9ecd2e121c59795924175c8dff198c142493f477
https://github.com/globus-gladier/gladier/commit/48cbaaf2e0e85f1ff8846ffad3ed06694a1f82b4
https://github.com/globus-gladier/gladier/commit/95f6ec1e75b72797b1aad2a90ef5f374aeef1bd5
https://github.com/globus-gladier/gladier/commit/c612383fe05ab0c7d018153b3b639df0c2b6e63f
https://github.com/globus-gladier/gladier/commit/6c0d3a7cf1792ccb08cf440559b7114f7a95c03c
https://github.com/globus-gladier/gladier/commit/a6e5cecf4928820025bb828eeb3d825a9292c5c5

Gladier, Release 0.7.1

e Drop support for old versions of globus-automate-client/funcx (5d17d96), closes /globus-sdk-
python.readthedocs.io/en/stable/upgrading. html#from- 1-x-or-2-x-to-3-0

6.14.1 0.6.0b2 (2022-02-17)

6.15 Bug Fixes

* Add packaging dependency (95f6ecl)

6.15.1 0.6.0b1 (2022-02-17)

6.16 BREAKING CHANGES

* The following versions of FuncX and the Globus Automate Client will no longer be supported:
* Globus Automate Client: Requires 0.13.0 and above
* FuncX: Requires 0.3.6 and above

Older versions of these packages are only compatible with Globus SDK v2, and require updating any code that relies
on the older Globus SDK version. See the SDK upgrade guide here:

6.17 Features

* Added ‘aliased’ tool chaining feature (48cbaaf)

6.18 Bug Fixes

* Added check when adding tool without flow states (c612383)
* Redeploy flow on 404s (6¢c0d3a7)
* tools/flows client not properly being cached in gladier clients (a6e5cec)

e Drop support for old versions of globus-automate-client/funcx (5d17d96), closes /globus-sdk-
python.readthedocs.io/en/stable/upgrading. html#from-1-x-or-2-x-to-3-0

6.19 0.5.4 (2021-11-15)

6.20 Bug Fixes

¢ Only apply migrations when needed (670daca)

6.15. Bug Fixes 33

https://github.com/globus-gladier/gladier/commit/5d17d967af16b9cd98a0ea9e3615224ad0f1c3d6
https://github.com/globus-gladier//globus-sdk-python.readthedocs.io/en/stable/upgrading.html/issues/from-1-x-or-2-x-to-3-0
https://github.com/globus-gladier//globus-sdk-python.readthedocs.io/en/stable/upgrading.html/issues/from-1-x-or-2-x-to-3-0
https://github.com/globus-gladier/gladier/commit/95f6ec1e75b72797b1aad2a90ef5f374aeef1bd5
https://github.com/globus-gladier/gladier/commit/48cbaaf2e0e85f1ff8846ffad3ed06694a1f82b4
https://github.com/globus-gladier/gladier/commit/c612383fe05ab0c7d018153b3b639df0c2b6e63f
https://github.com/globus-gladier/gladier/commit/6c0d3a7cf1792ccb08cf440559b7114f7a95c03c
https://github.com/globus-gladier/gladier/commit/a6e5cecf4928820025bb828eeb3d825a9292c5c5
https://github.com/globus-gladier/gladier/commit/5d17d967af16b9cd98a0ea9e3615224ad0f1c3d6
https://github.com/globus-gladier//globus-sdk-python.readthedocs.io/en/stable/upgrading.html/issues/from-1-x-or-2-x-to-3-0
https://github.com/globus-gladier//globus-sdk-python.readthedocs.io/en/stable/upgrading.html/issues/from-1-x-or-2-x-to-3-0
https://github.com/globus-gladier/gladier/commit/670daead98ec6c4fde796ec5b5e9a60378b8da9e

Gladier, Release 0.7.1

6.21 0.5.3 (2021-09-14)
6.22 Bug Fixes
* Limits run label length to 64 chars (53cd20f), closes #146
6.23 0.5.2 (2021-08-23)
6.24 Features

» Expanded flow modifiers to accept all top level state fields (3b3135f)

6.25 Bug Fixes

» Flow Modifier errors not propagating Client or Tool names (1af9724)

* Remove funcx-endpoint version check (8fe88a3)

6.26 0.5.1 (2021-08-19)

6.27 Bug Fixes

* Deploying new flows with the latest version of the flows service (afaSadf)

6.27.1 0.5.0 (2021-08-05)

6.28 BREAKING CHANGES

* Removal of older introductory testing tools

6.29 Bug Fixes

* logout not properly clearing authorizers cache (05b0d6c)

¢ Pass an ‘empty’ schema by default to fulfill automate requirement (bf9¢b80)
* pin automate version to avoid future incompatible releases (b736fa2)

* Raise better exception when no flow definition set on tool (eb8ac03)

¢ Remove old “Hello World” tools. We have better ones now. (3a889f9)

34

Chapter 6. Changelog

https://github.com/globus-gladier/gladier/commit/53cd20f867c74a7f560d4008d7503b72249041ef
https://github.com/globus-gladier/gladier/issues/146
https://github.com/globus-gladier/gladier/commit/3b3135f3e962661c70a1aa126589f9842e466f61
https://github.com/globus-gladier/gladier/commit/1af972431615e0d9ff1a13354bedf35bb72a33ca
https://github.com/globus-gladier/gladier/commit/8fe88a3094a1b4fb3204c176db3318c0bc273b8b
https://github.com/globus-gladier/gladier/commit/afa5adfa321971ff359a6d60b7d428294ecab477
https://github.com/globus-gladier/gladier/commit/05b0d6c7d958baf41787e282e017407c1d213cfe
https://github.com/globus-gladier/gladier/commit/bf9eb801446b8dc85f6dddce4101264229068861
https://github.com/globus-gladier/gladier/commit/b736fa20f36190b3fb5192632aeedc3a46e2ec07
https://github.com/globus-gladier/gladier/commit/eb8ac03c9483b354fa65b14fa716cee2826f5928
https://github.com/globus-gladier/gladier/commit/3a889f98cc21dc2c5e883cb3fb4c748905629d0a

Gladier, Release 0.7.1

6.30 0.4.1 (2021-07-20)

6.31 Features

* Added get_run_url for fetching the link to a running flow in the Globus webapp

* Arguments to run_flow support pass through args to the flows service

6.31.1 0.4.0 (2021-07-19)

6.32 BREAKING CHANGES

e — This will break all current funcx functions without modification. Everyone will need to upgrade to the new
funcX endpoint package wherever they are executing functions. See the full migration doc in Migrating to V0.4.0

6.33 Features
» Upgrade to FuncX 0.2.3 (from 0.0.5) (83507{7)
6.34 0.3.5 (2021-07-14)
6.35 Features
* Added config migration system to Gladier (cdc7875)
6.36 0.3.4 (2021-07-09)
6.37 Bug Fixes
* gladier improperly falling back onto FuncX authorizers (3976a3a)
6.38 0.3.3 (2021-06-18)

6.39 Bug Fixes

* Tools with more than two states would raise error with flow gen (dd6586¢)

e when user adds new AP to flow, Gladier now handles re-auth (e24a372)

6.30. 0.4.1 (2021-07-20) 35

https://gladier.readthedocs.io/en/latest/migration.html#migrating-to-v0-4-0
https://github.com/globus-gladier/gladier/commit/83507f79d0de2332a4f10e063284fc7685581f9c
https://github.com/globus-gladier/gladier/commit/cdc7875c1c263bcf5eb9c5c61db58ce1df75ec23
https://github.com/globus-gladier/gladier/commit/3976a3afad2cfd9752e2828037f46b2988b47541
https://github.com/globus-gladier/gladier/commit/dd6586ee9f14c9e09e4a61f08eecdb94d89b28bc
https://github.com/globus-gladier/gladier/commit/e24a372ca4af71affe5d891e6a83c99eb71c933b

Gladier, Release 0.7.1

6.40 0.3.2 (2021-06-17)
6.41 Bug Fixes

¢ add funcx-endpoint==0.0.3 to Gladier requirements (8ac47b8)
6.42 0.3.1 (2021-06-04)
6.43 Bug Fixes

* Fixed bug when instantiating two Gladier Clients (3aca2fe)
6.44 0.3.0 (2021-05-28)

6.45 Features

* Support flow modifiers, payload dict modifiers (a05b77a)
* FuncX ids and Flow ids are now saved in ~/.gladier-secrets.cfg instead of ./gladier.cfg
* Added support for setting Groups

¢ Added support for setting subscription ids

6.46 Bug Fixes

* Added changes lost from previous merges to fix client (c707d32)

6.47 0.2.0 - May 17, 2021

e Changed name gladier.defaults.GladierDefaults to gladier.base.GladierBaseTool
* Changed name gladier.client.GladierClient to gladier.client.GladierBaseClient

* Added a lot more documentation to the read-the-docs page!

6.48 0.0.1 - Apr 5, 2021

e Initial Release!

36 Chapter 6. Changelog

https://github.com/globus-gladier/gladier/commit/8ac47b81a54839cd182a090219d6cdbb16079c44
https://github.com/globus-gladier/gladier/commit/3aca2fe6d48788bfe3a199ebe76b0a9817bc08d3
https://github.com/globus-gladier/gladier/commit/a05b77aa42531e80be2bdae156f060de2a4e5e20
https://github.com/globus-gladier/gladier/commit/c707d321e0893d17c953d1f6fe3b6f846d298bc0

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

37

Gladier, Release 0.7.1

38 Chapter 7. Indices and tables

A

AsymmetricDecrypt (class in glad-
ier_tools.posix.asymmetric_decrypt), 18
AsymmetricEncrypt (class in glad-

ier_tools.posix.asymmetric_encrypt), 18

D

Decrypt (class in gladier_tools.posix.decrypt), 17

E

Encrypt (class in gladier_tools.posix.encrypt), 17

G

get_input(Q (gladier.client.GladierBaseClient
method), 10

get_status() (gladier.client.GladierBaseClient
method), 11

GladierBaseClient (class in gladier.client), 10

H

HttpsDownloadFile (class in glad-
ier_tools.posix.https_download_file), 16

L

login(Q) (gladier.client.GladierBaseClient method), 10
logout) (gladier.client.GladierBaseClient method), 10

P

progress() (gladier.client.GladierBaseClient method),
12
Publish (class in gladier_tools.publish), 15

R

run_flow() (gladier.client.GladierBaseClient method),
11

T

Tar (class in gladier_tools.posix.tar), 16
Transfer (class in gladier_tools.globus.transfer), 14

U

UnTar (class in gladier_tools.posix.untar), 16

INDEX

39

	Gladier
	Installation
	Setup
	Globus Connect Personal
	FuncX Endpoint

	Getting Started
	Re-Running Flows
	Next Steps

	Clients
	Main Components
	Other Attritubes
	See Also

	Tools
	Writing Custom Tools
	Flow Generation
	Flow Generation on Gladier Tools
	Flow Generation Modifiers

	Flow Generation on Gladier Clients
	Modifiers

	SDK Reference

	Gladier Tools
	Globus Tools
	Globus Transfer

	Publish Tools
	Publish

	Posix Tools
	Tar
	Untar
	HTTPS Download File
	Encrypt
	Decrypt
	Asymmetric Encrypt
	Asymmetric Decrypt

	Examples
	Pre Requisites
	Example Flows
	Tar and Transfer
	Steps

	Encrypt and Transfer
	Steps

	Upgrade Migrations
	Migrating to v0.5.0
	Migrating to v0.4.0
	FuncX Endpoints
	Argument Passing and Function Definitions
	FuncX Functions
	Flow Definitions
	FuncX Flow Result Format

	Glossary
	Globus
	Globus Flows
	FuncX
	Globus Queues and Triggers
	Globus Transfer
	Globus Auth

	Changelog
	0.7.1 (2022-08-25)
	Bug Fixes
	0.7.0 (2022-08-22)

	⚠ BREAKING CHANGES
	Features
	Bug Fixes
	0.6.3 (2022-07-20)
	Bug Fixes
	0.6.2 (2022-05-06)
	Bug Fixes
	0.6.1 (2022-05-05)
	Features
	0.6.0 (2022-05-05)

	⚠ BREAKING CHANGES
	Features
	Bug Fixes
	0.6.0b2 (2022-02-17)

	Bug Fixes
	0.6.0b1 (2022-02-17)

	⚠ BREAKING CHANGES
	Features
	Bug Fixes
	0.5.4 (2021-11-15)
	Bug Fixes
	0.5.3 (2021-09-14)
	Bug Fixes
	0.5.2 (2021-08-23)
	Features
	Bug Fixes
	0.5.1 (2021-08-19)
	Bug Fixes
	0.5.0 (2021-08-05)

	⚠ BREAKING CHANGES
	Bug Fixes
	0.4.1 (2021-07-20)
	Features
	0.4.0 (2021-07-19)

	⚠ BREAKING CHANGES
	Features
	0.3.5 (2021-07-14)
	Features
	0.3.4 (2021-07-09)
	Bug Fixes
	0.3.3 (2021-06-18)
	Bug Fixes
	0.3.2 (2021-06-17)
	Bug Fixes
	0.3.1 (2021-06-04)
	Bug Fixes
	0.3.0 (2021-05-28)
	Features
	Bug Fixes
	0.2.0 - May 17, 2021
	0.0.1 - Apr 5, 2021

	Indices and tables
	Index

